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Scene Understanding: Definition ﬂ(IT

Karlsruher Institut fir Technologie

Scene Understanding describes the cognitive process of transforming
raw visual input into a semantic scene representation.

Raw Visual Scene Scene
Data Understanding Representation
Examples: Examples:
® Colorimages B Pixel-wise Labeling
B Depth images B Object bounding boxes
@ Point clouds @ Scene graph

A
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Scene Understanding: Geometric Information ﬂ(IT
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Image e Regular structure (2D grid)
(RGB / RGB-D) * RGB: color, RGB-D: color + depth

: e Natural 3D representation S -
Point Cloud P e

e Unordered sets N

: e Regular str re (3D gri
Voxel Grid egular structure (3D g .d)
e Sparse data representation

e High information density
e Artificial data format

Object Mesh

Image from Li, Y., Pirk, S., Su, H., Qj, C. R., & Guibas, L. J. (n.d.). FPNN: Field
Probing Neural Networks for 3D Data; https://arxiv.org/abs/1605.06240

A
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https://arxiv.org/abs/1605.06240

Scene Understanding: Pixel-wise Labeling ﬂ(IT

Karlsruher Institut fir Technologie

Pixel-wise labeling annotates each pixel of the input image with a semantic
label, e.g. floor, wall, and sofa.

blinds

Scene
Understanding

S. Gupta, P. Arbelaez, and J. Malik. “Perceptual organization and
recognition of indoor scenes from RGB-D images,” CVPR (2013).

&
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Scene Understanding: Object Bounding Boxes ﬂ(IT
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B Classification and localization of multiple objects

B Localization: Bounding box around the detected object

Scene
Understanding

Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger,” CVPR (2017).

Robotics Il — Sensors and Perception| Chapter 6 . H ﬁ T
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Scene Understanding: Primitive Extraction

B Segment input into separate objects or object parts
B For each segment: Fit a geometric primitive

B Geometric primitives: planes, boxes, cylinders, spheres, ...

Scene
Understanding

Robotics Il — Sensors and Perception| Chapter 6
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Scene Understanding: Support Graph A\‘(IT
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B Physical relationship between objects:
Which objects are supported by which other objects?
B Representation: Graph
® Nodes: objects
W Edges: support relations

Scene /‘:{ A Ly Box 4

Understanding Box_2

R. Kartmann, F. Paus, M. Grotz and T. Asfour, "Extraction of Physically Plausible
Support Relations to Predict and Validate Manipulation Action Effects," RA-L (2018)

&
Robotics Il — Sensors and Perception| Chapter 6 H 2 T



Levels of Semantic Understanding ﬂ(IT
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Object Dog M =: Spatial Relations
. Temporal Relations
Relations <> P

Support Relations

High

Object Instance

ObjECt Detection
Instances Object Localization I
6D Pose Estimation g
go]
Annotated Classifi.cation S
Bounding Boxes IS
Images Pixel-wise Labeling -'é
&
[}
Color Images n
Images Depth Images Low
Point Clouds

A
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Image Classification and Object Localization ﬂ(IT
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B Image classification assigns one label from a predefined set of class labels to
an input image

Dog

Image Cat
Classification Bird

B Object localization additionally finds the parts of an image belonging to the
determined instance of an object class

Object
Localization

A
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Image Classification: Single vs. Multiple Objects ﬂ(IT
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B Single-object image classification assigns one class label per input image

Cat  Ccat

B Multi-object image classification assigns more than one class label per input
image

Cat, Dog, Duck Cat, Dog, Duck

13 Robotics Il — Sensors and Perception| Chapter 6 . H i T




KIT

Object Detection using Bounding Boxes

B Object detection is a multi-object image classification and localization task
® Determines bounding boxes of every detected object in the image
B Assigns the label of the object class to each bounding box

B A detected object can be described by its center (bx, by),
its width b,,, and its height by,

~

)

: o
] (baby)

P e i A
[

7 LY

Dog, Bike, Truck
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Object Detection for Multiple Objects (l) ﬂ(IT

Karlsruher Institut fir Technologie

B Reuse image classification for detection of multiple objects
® Sliding window

® Region Proposal Networks (RPN) to
generate boxes

B Sliding window over the input image

® Run image classification on each window

B Example: Region-based CNN (R-CNN),
Fast R-CNN

R. B. Girshick, "Fast R-CNN", ICCV, pp. 1440-1448 (2015)

A
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Object Detection for Multiple Objects (ll) A\‘(IT

Karlsruher Institut fir Technologie

B Region Proposal Networks (RPN)
B Use a network to propose possible object bounding boxes (image regions)
® Only run the image classifier on the proposed bounding boxes
® Example: Felzenszwalb et al., 2010

B Disadvantages of reusing image classification for object detection
® Performance: Classification needs to be run for each window

B Complexity: Classification and bounding box proposal are different systems
which need to be trained/configured separately

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object
detection with discriminatively trained part based models”. TPAMI (2010)

&
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Object Detection using YOLO A\‘(IT
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YOLO (You Only Look Once) solves multi-object detection as a single regression
problem (compared to sliding window or RPN approaches)

B Input: Color image
B Output: Bounding boxes, class label and class probability
@ Uses a multi-layer convolutional neural network

B The network structure is simpler than most other state-of-the-art methods
which allows real-time execution on modern GPUs

B Open Source: https://pjreddie.com/darknet/yolo/

Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger.” In CVPR (2017).

&
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YOLO: Overview ﬂ(IT

B Splittheimageintoa § X S grid
B Predict B bounding boxes per grid cell

B Classify each grid cell

® Use non-maximum suppression to
filter bounding boxes (detect every object only once)

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., “You only
look once: Unified, real-time object detection”. ICVPR (2016)

A )
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YOLO: Bounding Box Prediction A\‘(IT
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B Predict B bounding boxes per grid cell

B Each cell is responsible for detecting objects whose center falls into the
corresponding cell

B Each bounding box can be described by 5 parameters
® Geometric parameters (bx, by, by, bh)
® Confidence of object detection
® Since the grid has the size S X S, the network predicts (S? - B - 5)
parameters for the bounding boxes

&
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YOLO: Classification ﬂ(IT
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B Predict C conditional class probabilities per grid cell
® P(Class;|Object): Probability of class i given an object exists in the grid cell

Tl O] Truck
[ || [ sike
— - Dog

D Floor

B The image on the right color-codes the most likely class label, but YOLO
predicts probabilities for all classes

B Classification is only done once per cell not per bounding box
® The network predicts (S?- C) class probabilities

&
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YOLO: Single Regression Model

B Single Regression
® Input: 448 X 448 X 3 RGB color image
® Output:S%-(B-5+0)
® Bounding box values: S? - B - 5
B Class probabilities: S? - C
B Model: Multi-layer CNN
® Convolutional layers
® Max-pooling layers
® Training
® Pre-trained convolutional layers (ImageNet 1000-class)
® Add layers to predict desired output

Robotics Il — Sensors and Perception| Chapter 6
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YOLO: Non-maximum Suppression ﬂ(IT
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® The network predicts multiple bounding boxes per cell
® Most of the predicted boxes will have
® Low confidence or
® Overlap with other boxes with a higher confidence
® Non-maximum suppression discards bounding boxes which have
® a3 confidence below a certain threshold or
W the largest shared area with other boxes

A
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YOLO: Pipeline SXSXB ﬂ(IT

. Karlsruher Institut far Technologie
Bounding Boxes

b

1= i | W

S X S Grid Final
Cells Detections

SXS
Classifications Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., “You only

look once: Unified, real-time object detection”. ICVPR (2016)

23 Robotics Il — Sensors and Perception| Chapter 6 . H i T
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Object Detection using YOLO: Example

il

https://www.youtube.com/watch?v=MPUZ2HistivI
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https://www.youtube.com/watch?v=MPU2HistivI

Example: YOLO on ARMAR-III ﬂ(IT

Karlsruher Institut far Technologie

W

[N
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Segmentation

Problem:
® Given an input image (RGB/RGB-D) or point cloud.
@ We want an element-wise labelling of ...

B segment ID (usually an integer)
B Class, type, role, ... (= semantic segmentation)

blinds

® instance ID (— instance segmentation)

Question: What constitutes a “segment”?
B Regions of similar color, shape, appearance, ...

B Objects, object parts, surfaces, ... =t
:> DependS on the taSkl S. Gupta, P. Arbelaez, and J. Malik. “Perceptual organization and

recognition of indoor scenes from RGB-D images,” CVPR (2013).

&
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Segmentation: Image vs. Point Cloud A\‘(IT

Karlsruher Institut far Technologie

An image is a 2D grid of pixels with RGB or RGB-D information.

® = Adjacency (i.e. neighboring pixels) is clear.

® Convolutions can be applied (— filters).

® Resolution is homogeneous and (usually) constant.

A point cloud is a collection of 3D points with XYZ and RGB information.
® No specific order = Finding neighboring points is more difficult/time consuming.
@ Resolution isinhomogeneous and variable (e.g. when registering multiple point clouds).

® Contains explicit 3D information = Allows to find ... oo,
® clusters which are spatially separated 0.':', * *o 2
B edges where (estimated) surface normals change ‘e e,

&
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Segmentation: Example of Classical Methods

Examples from PCL (Point Cloud Library)
B https://pointclouds.org/

B Usually require fine-tuning of parameters.

Euclidean CIustering Region Growing LCCP (Local convexity connected patches)
Grows segments from a seed until Groups oversegmeted patches to
thresholds are met (e.g. normal). convex shapes.

Nearest neighbor clustering using
Euclidean distance

Robotics Il — Sensors and Perception| Chapter 6
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Point Cloud Segmentation with Neural Networks A\‘(IT

Karlsruher Institut far Technologie
Classifica

. . 2 transform sl tle'lstt\'l rm P (IR0 mo‘:)xl (6] IZmZ}gﬁ k)

B Point Clouds are inherently unstructured {E{E LD n M- Dﬁa@
® Neural Networks need ordered input e
=5t 1 o ; g :E:md 5 _
e

® PointNet applies symmetrical function, i.e. T mm
max-pooling, avg-pooling ... ‘ ‘ ‘

- Result is independent of the

ordering of the point set *a iﬂé 7 mug?
> Result is independent of the Ty table?
number of input points car?

Semantic Segmentation Part Segmentation Classification

Qj, C. R., Su, H., Mo, K., & Guibas, L. J. (2016). PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

&
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Scene Representation: Object Instances A\‘(IT
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B Ascene can be represented as a set of object instances

Scene Understanding

B Representation of object instances
® Class label
® Instance identifier
® Localization information
B Localization information
® Object instance segmentation
® 6D object pose

&
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Object Instance Segmentation ﬂ(IT

Karlsruher Institut far Technologie

B Object instance segmentation determines the part of an image which belong
to the corresponding object instances
B Parts of an image can be determined on different detail levels
® Approximate: Bounding Box
B Exact: Pixel-wise Labeling

Bounding ox Pixel-wise Labeling

32 Robotics Il — Sensors and Perception| Chapter 6 . H ﬁ T




Instance Segmentation with Mask R-CNN ﬂ(IT

Karlsruher Institut fir Technologie

B Mask R-CNN performs the following tasks
B Multi-object image classification and detection in form of bounding boxes

B Pixel-wise labeling of each bounding box

® Method
W Extraction of bounding boxes

B Region proposal network for object candidates
B Run image classification for each proposed region
B Pixel-wise labeling

® Fully-convolutional network for
semantic segmentation

® Run semantic segmentation for each bounding box

He, K., Gkioxari, G., Dollar, P., and Girshick, R, “Mask R-CNN”. ICCV (2017)

A 3
33 Robotics Il — Sensors and Perception| Chapter 6 H 2 T



6D Pose Estimation ﬂ(IT
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B 6D pose estimation determines the position and orientation of a detected object in
the camera’s coordinate system

B Relevant for detection and localization of known objects
B Typical representations of a 6D pose:

® Homogenous transformation matrix T = (Ig D

B with rotation matrix R € R3%3
® and translation vector t € R3

® Orientation as unit quaternion g € H and a translation vector t € R3

6D Pose Estimation

34 Robotics Il — Sensors and Perception| Chapter 6



Pose Estimation using Harris/SIFT A\‘(IT

Karlsruher Institut far Technologie

B Goal: Robust, real-time pose estimation of known objects

@ I|dea: Combine
@ Harris corner detector and
B SIFT (Scale Invariant Feature Transform) descriptors

a St Details about corner detectors and
epS features in a previous chapter

® Hough Transform
® RANSAC (Random Sample Consensus)
W Least squares homography estimation

Azad, P., Asfour, T., and Dillmann, R., "Combining Harris interest points and
the SIFT descriptor for fast scale-invariant object recognition." IROS (2009)

&
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Pose Estimation using Harris/SIFT: Example

3D model drawn as an overlay to show the pose estimation result

Robotics Il — Sensors and Perception| Chapter 6
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Scene Representation: Object Relations A\‘(IT
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B Ascene can be represented as object instances and their relations

iy o
] g

Scene Understandi :
cene understanaing 0
‘—POnI

B Given a set of object instances O, a binary relation between object instance
pairs is element of theset R € 0 X O

® If and only if the relation holds between objects 0; € O and o; € O,
then (oi, oj) €R
B Example above:

W Object instance set O = {Dog, Bike, Truck, Porch, Street}
® Binary relation R,,, = {(Dog, Porch), (Bike, Porch), (Truck, Street)}

&
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Object Relations: Graph Representation A\‘(IT
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B Binary object relations can be encoded as a directed graph
B Adirected graph G = (V, E) consists of

W Set of vertices V

W Set of ordered pairs called edges E

B Construction of a directed graph G = (Vy, ER)
based on object relations R € 0 X O

B The set of object instances is the node set: V = O
® The binary relation is the edge set: Er, = R

® Example: I% <>

O = {Dog, Bike, Truck, Porch, Street} ::: - porch <>
—» On I

H

R,, = {(Dog, Porch), (Bike, Porch), (Truck, Street)}

2T
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Object Relation Types ﬂ(IT
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B Object relations differ in their
B Type
B Temporal context

B Example types of relations: spatial, support

Spatial Relations Support Relations
A 3
Above Right Contained Box_1 — Box_2
x
Box 0

B Temporal context
W Static: Consider a single frame
® Dynamic: Consider changes over time

&
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Spatial Relations A\‘(IT
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B Spatial relations describe the relative position of two objects

B Different temporal context of spatial relations

B Static
® Dynamic
Static Spatial Relations Dynamic Spatial Relations
i Sis Rl
Above Right Contained Moving Getting Moving
together closer apart

Ziaeetabar, F., Aksoy, E. E., Worgoétter, F., and Tamosiunaite, M., “Semantic analysis of
manipulation actions using spatial relations.” ICRA, 2017

&
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Extraction of Spatial Relations from RGB-D A\‘(IT

=
J

2D Object
Detection

Karlsruher Institut far Technologie

Spatial

2D Human
Pose

Depth

42 Robotics Il — Sensors and Perception| Chapter 6
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Support Relations A\‘(IT
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® For two objects A, B € O we denote SUPP(A4, B)
iff. removing A causes B to lose its motionless state, i.e. A supports B.

Mojtahedzadeh, R., Bouguerra, A., Schaffernicht, E., and Lilienthal, A. J., “Support relation analysis and decision
making for safe robotic manipulation tasks”. Robotics and Autonomous Systems (2015)

B Representation: Support Graph
=>» Transitively reduced

cylin
/ corn
crisps /’ d ‘\
tea < vita
f orange ~_ "
. boxM
muffin \
/ boxR
table

&
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Extraction of Support Relations ﬂ(IT
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@ Input point cloud from RGB-D camera
B Segment into object hypotheses (LCCP, Region Growing)

@ Build support graph

B Extract object geometry (RANSAC)

R. Kartmann, F. Paus, M. Grotz and T. Asfour, "Extraction of Physically Plausible Support Relations to Predict and
Validate Manipulation Action Effects," Robotics and Automation Letters (RA-L), 2018

A )
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Manipulation of Object Relations

Problem so far: Scene — Relations

® Which relations are present in the scene?
(discriminative)

B Useful for, e.g., action recognition

Problem now:

Where to place objects to realize a spatial
relation = Find suitable placing position

(Scene,, Relation) — Scene; 4

® What is the best object placement to realize a spatial
relation (generative)

@ Useful for, e.g., action execution

Robotics Il — Sensors and Perception| Chapter 6
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Put the apple tea in front of the corny.

Let the apple tea be on the other side of
the corny.
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Generative Model for Spatial Relations A\‘(IT
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Place an object according to a spatial relation

[ ] [ ] [ ] [ ] [ ] left
= Find suitable placing position
° L] . L] . ?
Idea: Use discriminative models: around

B Problem: Which target position in the valid -
areas to choose?

Better: Use generative models.

B Model a spatial relation as a probability
distribution over placing positions.

B Sample from distribution to find suitable
placing positions.

Robotics Il — Sensors and Perception| Chapter 6
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Spatial Relations: Polar Coordinates A\‘(IT
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Goal: Suitable representations of spatial relations in a two-dimensional plane.
@ How to model, e.g., “around” in a simple manner?

, around
B (Multivariate) Gaussian: peak in the center highp

: low
B GMM!: complex, requires many components f p

Alternative idea: Use distance and direction instead of x, y
= Probability distribution in polar coordinates

1 Gaussian Mixture Model

Kartmann, R., Zhou, Y., Liu, D., Paus, F., and Asfour, T., “Representing Spatial Object Relations as Parametric
Polar Distribution for Scene Manipulation Based on Verbal Commands.” IROS 2020

&
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Spatial Relations: Polar Distribution A\‘(IT
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Use distance and direction instead of x, y = Distribution in polar coordinates
Distribution defined in polar coordinate system (PCS) at reference object.
® Cartesianp = (X Y)T - Polarg=(d ¢)T € R?

W Distance: d ~ N(ud, 05) (Gaussian)
B Angle: ¢ ~ ]V[(,u(p, J(f,) (von Mises; circular normal
distribution)

<

® Consider d and ¢ independent:
p(d, ) = p(d|ug, 0F) - p(d|ug. og)

® Means g >0,y € [-m,m] e

e el

® Variances 0,0, € Ry DR

&
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Spatial Relations: Estimating Polar Distribution A\‘(IT
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B Polar distribution has a simple form
= Can be estimated from data using Maximum Likelihood Estimation (MLE).

® Example: “Left”: ugy ~ tm

Cartesian Space

e
<

&
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Spatial Relations: Static Relations A\‘(IT
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W Static relations: Depend only on reference object’s current position.
B Defined = 0 as reference object’s size = adapt the distribution to the object size.

Left vs Right:
® Mainly differ in mean direction p,

00 02 04 06 08 1.

c
.E
(2]
(V]
)
S
©
(®)
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Spatial Relations: Static Relations A\‘(IT

Karlsruher Institut far Technologie

W Static relations: Depend only on reference object’s current position.
B Defined = 0 as reference object’s size = adapt the distribution to the object size.

Near vs. Far vs. Inside:
® Mainly differ in mean distance p 4

@ High direction variance aqzb

3 vl

00 02 04 06 08 1. 00 02 04 06 08 1. 00 02 04 06 08 1.

Cartesian
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Spatial Relations: Dynamic Relations A\‘(IT
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® Dynamic relations: Dependent on target object. = Align polar coordinate system so:
B d =1 2 initial distance to target object.
B ¢ = 0 £ initial direction to target object.

® = between objects

Farther:

" ug>Lpuy=0

B = farther than current distance 025 050 075 10
Other side:

a Ug = 17 ‘Ll¢ = in-
® = 180° away from current direction

Cartesian

53 Robotics Il — Sensors and Perception| Chapter 6
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Machine Learning for Object Relations ﬂ(IT
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B Goal: Use Machine Learning (ML) to predict object relations

Learn

® Requirements
® Number of objects is variable
® Result should be order invariant
@ Problems with standard ML approaches
® [Input size must be fixed
® Order of the input is relevant

&
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ML for Object Relations: Classical Approach A\‘(IT
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P

T 1

EEO

S ~ olm
o o olm
o o olm

17

W Stack objects properties (pose, color, size, ...) into a single input
vector

B Use a Multi-Layer Perceptron to produce the desired output

® Encode the output as an adjacency matrix containing support
relations

&
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ML for Object Relations: Problems A\‘(IT
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How to handle variable number of objects?

P

o o olm
o o o8
B

EEED
S = Ol

e

W Stacked input vector has different dimension
® Output matrix has different dimension

&
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ML for Object Relations: Problems A\‘(IT
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0 80

mld0 0 O

B 0 0
g

® Order is arbitrary

® How to handle order of objects?
® Train on all combinations of n objects: n! I

® Computationally expensive

<

yavd

@ Solution: Graph Networks E

Edge block Node block Global block

&
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Graph Networks A\‘(IT
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B Graph networks operate on graph structures (input and output are graphs)

® Graph G = (V,E,u)

® VerticesV B
® EdgesE i
® Global attributes u N
E_
@ Central building block is a GN block by I Rarrare

® Inputgraph G = (V,E,u)
® Outputgraph ¢' = (V',E",u’)
® Vertices, edges and attributes can change

Full GN Block

Battaglia, P. W. et al. “Relational inductive

B Code: https://github.com/deepmind/graph nets biases, deep learning, and graph networks.”
arXiv preprint arXiv:1806.01261 (2018).

&
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https://github.com/deepmind/graph_nets

Graph Networks: GN Block A\‘(IT
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B Graph Networks (GNs) as proposed by Battaglia et al., 2018

B Basic building block: GN Block

Input Graph Output Graph

GN Block

Battaglia, P. W. et al. “Relational inductive biases, deep learning, and graph
networks.” arXiv preprint arXiv:1806.01261 (2018).

&
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@ Directed, attributed multi-graph

A=
® NodesV ={v;|i€[1,N,]} %pr ]
B Node attributes Vi (S Rdv Edge block  Node block Global block
W EdgesE = { (e, 1%, Sk) | k € [1,N,], 1%, i € [1, Nv]}\A »/ .
® Edge attributes e; € R% t

B Receiver node index 1y
® Sender node index s

® Global attribute u € R%
62 Robotics Il — Sensors and Perception| Chapter 6 H?T
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Graph Networks: GN Block

B Graph Networks (GNs) as proposed by Battaglia et al., 2018

B Basic building block: GN Block

Input Graph

Robotics Il — Sensors and Perception| Chapter 6

GN Block

Output Graph

KIT
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Graph Networks: GN Block

B Consists of three update and three aggregation functions

® Update ®°, YV, O
B Aggregate p© ", p° 7%, p
@ Process:

Robotics Il — Sensors and Perception| Chapter 6

v-ou

KIT
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u — — u

V& -—vV"
N

E— —-E

Edge block Node block Global block

Full GN Block
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B Consists of three update and three aggregation functions
B Update ©°¢, @V, o4 :

Vv

yavd

B Aggregate p© Y, p° %, pV "

B Process: g

Edge block Node block Global block

1. Update edges depending on sender, receiver and global state
e}c = (I)e(ek, (2 Usk,ll)

&
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B Consists of three update and three aggregation functions
B Update ©°¢, @V, o4 :

Vv

yavd

B Aggregate p© Y, p° %, pV "

B Process: g

Edge block Node block Global block

1. Update edges depending on sender, receiver and global state
e, = Cbe(ek, vrk,vsk,u)
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B Consists of three update and three aggregation functions
B Update ©°¢, @V, o4 :

Vv

yavd

B Aggregate p© Y, p° %, pV "

B Process: g

Edge block Node block Global block

1. Update edges depending on sender, receiver and global state
e, = Cbe(ek, vrk,vsk,u)

&
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B Consists of three update and three aggregation functions
B Update ©°¢, @V, o4 :

Vv

yavd

B Aggregate p© Y, p° %, pV "

B Process: g

Edge block Node block Global block

1. Update edges depending on sender, receiver and global state
e, = Cbe(ek, vrk,vsk,u)
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B Consists of three update and three aggregation functions
B Update ©°¢, @V, o4 :
B Aggregate p© Y, p° %, pV " Y

yavd

B Process: g

Edge block Node block Global block

1. Update edges depending on sender, receiver and global state

e), = cbe(ek, v,,k,vsk,u)
2. Update receiving nodes

— q)v(vuu pe—>v(E ))
E;: Incoming edges to vl, Le.1, =1

&
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B Consists of three update and three aggregation functions
B Update ©°¢, @V, o4 :
B Aggregate p© Y, p° %, pV " Y

yavd

B Process: g

Edge block Node block Global block

1. Update edges depending on sender, receiver and global state
e, = CDe(ek, vrk,vsk,u)

2. Update receiving nodes

— q)v(vuu pe—>v(E ))
E;: Incoming edges to vl, Le.1, =1
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B Consists of three update and three aggregation functions
B Update ©°¢, @V, o4 :
B Aggregate p© Y, p° %, pV " Y

yavd

B Process: g

Edge block Node block Global block

1. Update edges depending on sender, receiver and global state

e, = CIDe(ek, Vrps Vs u) .
u
2. Update receiving nodes O

— q)v(vuu pe—>v(E ))
E;: Incoming edges to vl, Le.1, =1

&
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B Consists of three update and three aggregation functions
B Update ©°¢, @V, o4 :

Vv

yavd

B Aggregate p© Y, p° %, pV "

B Process: g

Edge block Node block Global block

1. Update edges depending on sender, receiver and global state
e, = Cbe(ek, vrk,vsk,u)
2. Update receiving nodes

— CI)”(vl,u p¢ v (E] ))
E;: Incoming edges to vl, e, =1

3. Update the global state
u' = ¥ (u, peH(E", pP (V)
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@ Structuring a learning problems introduces
Inductive Bias

® Examples:
B CNNs use convolutional kernels

B Translational invariance: Features can be extracted
independent of their pixel position (same kernel)

B Locality: Features depend only on CC license by Michael Plotke
neighboring pixels

Ml:l &

[

N
'”3‘"7”'_'\|ﬂ*3 i ‘i \I 1

® SE3-Nets (Byravan and Fox, 2017) use SE(3) transformations ™ & % & " &
) I 0 — -
B Objects move like rigid bodies it it i [ | il

&
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Graph Networks: Relational Inductive Bias A\‘(IT
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B Update functions ®¢, ®Y, d4
B Are reused for all nodes and edges (similar to convolutional kernels)
® Implementation: MLP, CNN
B Aggregate functions p®~Y, p¢~4%, pv™t
® Invariant to permutations of the input
® Variable number of arguments

® Implementation: sum, average, min, max

B Edges determine which objects interact
=» Computational dependency reflects relational structures

B Reuse of update function
=» Allows combinatorial generalization

&
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B GN blocks can be combined into more complex models

B A common pattern is Encode-Process-Decode
® Encode the input graph G;;, into the latent representation Gq¢ i,
® Run a GN block multiple times (X M) on G4t i, Producing Gig¢ out

® Decode the latent representation G4 oy into the output graph Gyt

B Encodinginto a latent representation Gat in GNeore Glat out
allows for ML efficient data processing / ki \

B Multiple processing steps allow the GN,,c GNgec
network to propagate information 1 1
along the edges of the graph G, G

mn out

&
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Overview

® Introduction

B Scene Representations

B Machine Learning for Object Relations

B Leveraging Object Relations
® Bimanual Action Recognition
® Placing Objects Based on Verbal Commands
W Support Relations for Safe Bimanual Manipulation
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Overview

® Introduction

B Scene Representations

B Machine Learning for Object Relations

B Leveraging Object Relations (@H?T)
@ Bimanual Action Recognition
® Placing Objects Based on Verbal Commands
W Support Relations for Safe Bimanual Manipulation
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Bimanual Action Recognition: Goal A\‘(IT
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® In a bimanual manipulation task, both hands perform different actions like
holding, pouring, stirring, etc.

B Goal: Recognize actions of both hands

B Idea: Use spatial relations between
hands and objects

Challenges:
® Variable number of unordered objects

® Relevant and irrelevant objects Ground Truth

&
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B Extract spatial relations from RGB-D video of task execution.

3D bounding boxes

® Per frame: , :
instance tracking

® Estimate bounding boxes
of hands and objects

B Extract spatial relations
between them

B Result:
W List of predicates

Spatial relations as
list of predicates

Contact(HandR, Knife)
Contact(HandL, Board)

Above(Knife, Board)

® Each predicate denotes Above (Banana, Board)
one spatial relation between Above(Board, Bowl)
a pair of objects FixedMovingTogether (HandR, Knife)

&
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Contact(Handr, Knife) / Graph Network \
Contact(HandL, Board) Encode-Process-Decode Model ] hold
Above (Knife, Board)
Above (Banana, Board) GNeore - p(?ur
Above (Board, Bowl) Iseng . stir
FixedMovi ngTogether(HandR, : ‘ I hammer
Knife) GNene I GNgec I
PR T I ¢
\ Ginp : Gont /
Spatial Relations as Spatial Relations as : Distribution of
List of Predicates Scene Graph Action Probabilities

GN Block

Edge block Node block Global block

Dreher, C. R. G., Wachter, M. and Asfour, T., Learning Object-Action Relations from Bimanual
Human Demonstration Using Graph Networks, Robotics and Automation Letters (RA-L), 2020

&
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B Encode spatial relations in scene graph: List of Predicates

® Nodes: Hands and objects Contact (HandR, Knife)

Contact(HandL, Board)

W Edges: Relations between hands and objects Above (knife, Board)

Above (Banana, Board)
Above (Board, Bowl)

contact v E;?ggl\)llow ngTogether(HandR,

Above x

' /,/’/ FixedMovingTogether v
Banana ‘ ‘
‘" Ccontact v
Tl Above v

Scene Graph

&
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Bimanual Action Recognition: Overview A\‘(IT
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Contact(Handr, Knife) / Graph Network \
Contact(HandL, Board) Encode-Process-Decode Model ] hold
Above (Knife, Board)
Above(Banana, Board) GNeore - p(?ur
Above(Board, Bowl) T/ . stir
FixedMovi ngTogether(HandR, : ‘ I hammer
Knife) GNene I GNgec I
\ Ginp 1 Gout /
Spatial Relations as Spatial Relations as : Distribution of
List of Predicates Scene Graph Action Probabilities
GN Block

Dreher, C. R. G., Wachter, M. and Asfour, T., Learning Object-Action Relations from
Bimanual Human Demonstration Using Graph Networks, RA-L (2020)

&
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B Encode scene graph for Graph Network: Input graph

® Node attributes: 1-hot encoding of object class
v; =(010..0) € {0,1}*? *— number of object classes

CHandR > > 010000000000
™ Handr

B Edge attributes: 0/1-vector of relations
e, =(1010 ..0) € {0’1}15 <— number of spatial relations

Contact v
Above x
1010000100O0O1IO000O0
FixedMoving v
Together T \
contact FixedMovingTogether
Above

® Global attribute: unused

&
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B Encode action classification for Graph Network: Output graph
® Node and edge attributes: unused
B Global attribute output: Action probabilities (softmax layer)

u' = (p; P2 P3-- P1a) €101]*, Qipi=1)

® Global attribute target (label): 1-hot encoding of action (right hand)
u' = (0 10 ... 0) € {0’1}14 < number of action classes

00000O0O0O10O0O0O0OO0O0O

t t t

Cutting Pouring Sawing

B Left hand: next slide

&
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B Global attribute target (label): 1-hot encoding of action (right hand)
B Recognition of left hand’s action:
® Mirror input graph (HandL <> Handr, Teft © right) and classify again.
B Same as mirroring RGB image and running processing (feature extraction) again.

@ Bimanual action recognition:
® Run the graph network twice.
® 1x on original scene graph + 1x on mirrored scene graph

= Inductive bias: Left and right hand behave similarly.
® Network can be smaller (e.g., output size: 14 instead of 28)
B Reuse data for both hands (2 scene graphs per frame)

&
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Bimanual Action Recognition: Overview A\‘(IT
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Contact(Handr, Knife) / Graph Network
Contact(HandL, Board) Encode-Process-Decode Model ] hold
Above (Knife, Board)
Above (Banana, Board) GNeore - p(?ur
Above (Board, Bowl) Iseng . stir
FixedMovi ngTogether(HandR, : ‘ I hammer
Knife) GNene I GNgec I
PR T I ¢
\ Ginp : Gont
Spatial Relations as Spatial Relations as : Distribution of
List of Predicates Scene Graph Action Probabilities

GN Blpck

Edge block Node block Global block

Dreher, C. R. G., Wachter, M. and Asfour, T., Learning Object-Action Relations from
Bimanual Human Demonstration Using Graph Networks, RA-L (2020)

&
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Standard Encode-Process-Decode architecture.

® All update functions ®¢, dV, dU:

Same network architecture (MLP with two layers of 256 neurons) These 9 MLPs

are trained.
B All aggregation functions p~", p¢~%, p?~%: Sum

W 10 processing steps

Encoder: Core: Decoder:
Independent graph Full graph network Independent graph

network block » block » network block
€ U L ?€ ¥ U P € Y U
il —~__ mmu \) il

10 processing
steps

softmax

It size

Ne urons

inp

356

——

2 layers

&
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KIT Bimanual Actions Dataset

@ RGB-D videos showing subjects perform
bimanual actions in a kitchen or
workshop context

B 6 subjects X 9 tasks X 10 repetitions
= 540 recordings

® Manual annotations of performed action |
by each hand for each video frame. ]

B First RGB-D dataset for bimanual action
recognition considering performed
actions of both hands individually.

Available online at: bimanual-actions.humanoids.kit.edu

&
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Right hand Left hand

/]

.....

B Classify action performed by each
hand in each frame.

® Visualize top candidate per hand

® Consecutive predictions of the same
action class result in an action
segment.

A 3
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@ Problem: Very noisy object bounding boxes (resulting from noisy depth data)
B wrong object geometry = wrong spatial relations (especially contact)
B Was the network generally able to recognize the correct action?

® Option 1: Is the top predicted action class correct?  action classification
W Strict to single top candidate. (for 1 hand in 1 frame)

True action

B Discards second-best prediction even if L]
probability is high.

Top

= Option 2: Is one of the 3 top candidates correct?

B Also considers second- and third-best predictions.
B Remember: We estimate probabilities for all 14 action classes.

&
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Bimanual Action Recognition: Quantitative Results (l)
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B Leave-one-subject-out cross-validation on manually labelled dataset

W £, score of action classification (mean over 6 folds resulting from 6 subjects)

Top 3

B Confusion matrices:
Predicted vs. true
action classes
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True action

Top

idle JEgY19.04.01.01.02

approach
retreat
lift
place
hold
pour

cut
hammer
saw

stir
screw
drink

wipe

01]
-.19.41.06.13.07.06.01.01.01 04 .01
=.04.06.43.12.12.12.01.01 .01 .06 .03
02.12.08/:.12.08.02.01 .01.02.01.01
<o01.04.11.1175.07.08 .01.01.03.04.01.01
-.02.05.06.08 .08 .01 04 .01
4 .01.01.06.20.01 [ .05
=.01.09.04.07.02.09
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J01.02.05.05.21.04 O 55| 01
- .01.02.00.01.02

-4  .03.04.02.04.07 Eﬂ
03 04.17.02.02 .01
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1 1 1 1 I 1 1 1 1 1 1 1
-3955%2;95§<§§3$i§;%5994Cf;$9\g i&fﬁ;ﬁgi§ge
RO N

Predicted action

idle
approach
retreat
lift
place
hold
pour
cut
hammer
saw

stir
screw
drink

wipe

.01,
.01 .
.01
.01

.07 .
.01

Top-3

Bely.01.01.01.

.02.03.04}8
.02.01.03.
.01.01.03.
.04.02.06.
03.01.03.
.02.05.03.

.01.01.
.01.01.01.

.01.01.01.

.01
.02
.02.01

202
.01
.02
.02

.01

1.0

0.8

0.6

- 0.4

= 0.2

= 0.0
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Major confusions:

B Place instead of saw, pour, drink, ... . Top
= No relation to table and orientation considered. idte JERY 19 04 01[o1f02 o
approach =.19.41.06.13(.07/06.01.01.01 .04 .01
® /dle, approach, retreat, lift, place o Jos 12 0B zlos0z.0r 009,010
. . . . o place =.01.04.11.11f “L07.08  .01.01.03.04.01.01
= Require correct dynamic relations, which are prone S wudmoocofofo o oo oo
to noise ot i e R
. H % hammer —,08.05,01.045.01 .07
ammer Vvs. saw = saw =.01.02.05.05].21f 04 ,04E 01
. . . . stir = .01.02[00l01.02
= Thin objects = 3D bounding box extraction from screw o .03.04.02{04{07
. . . drink =.03 04)17[02.02 o1 Efl
depth image not reliable in such cases. wipe =03 02 040501 E
1 ] | 1 | | | 1 | | 1 |
FEFEEL S S S P S F
Sl o Q & LTS
@QQ“ < %

Predicted action

&
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Bimanual Action Recognition: Discussion

Major confusions:
B Place instead of saw, pour, drink, ... .
= No relation to table and orientation considered.

idle

approach =
W /dle, approach, retreat, lift, place A
place

= Require correct dynamic relations, which are prone
to noise

True action

® Hammer vs saw

= Thin objects = 3D bounding box extraction from
depth image not reliable in such cases.

Top-3 evaluation
® Similar effects observable, although smaller magnitude.

Robotics Il — Sensors and Perception| Chapter 6

hold
pour
cut
hammer
sawW

stir
screw
drink

wipe
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Top-3
N11.01.01.01.01.01
Mg .02 .02.04.02 .02
=1 01.028F8.06.03.02.01 .01
=1.01.02.048p4.03.03 .02 .01

=1.01.02.03.04 %P1.04
=01.02.01.03.038
- .01.01.03.02
- .04.02.06.01.08
=1.07.03.01.03.08.01
-401.02.05.03.13.02

- .01.01.01 .01
- .01.01.01.03.04
=101 .02.01.01
=.01.01.01.01.01

1 1 1 1 1 1
) DR 0D
ST S 3

‘L\' < g L

E el ol C
\Qi) < Q\ o 9

Q ¢ >

Predicted action
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Overview

® Introduction

B Scene Representations

B Machine Learning for Object Relations

B Leveraging Object Relations
® Bimanual Action Recognition
B Placing Objects Based on Verbal Commands
® Avoiding Side-Effects in Bimanual Manipulation
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Placing Objects Based on Verbal Commands: Goal A\‘(IT
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Given: Put the apple tea in front of the corny.
® Verbal command specifying the spatial Let the apple tea be on the other side of
the corny.

relation between two objects.

Goal:

@ Place an object according to that spatial
relation.

Idea:

@ = Find suitable placing position using
learned polar distributions.

@ = Adapt movement primitive to move
object to placing position.
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Placing Objects o A. o)
D | St rl b ut 1oNsS Karlsruher Institut far Technologie
. v
Verbal Match Polar
Human —— ) .« el as
Command Relation Distribution Grounded
~_
l Ground Polar
. Match ~ Object Distribution
Objects J Features v
L 4 5
Sample, Filter,
Select
'
Target Position
'
Movement
Kartmann, R., Zhou, Y., Liu, D., Paus, F., and Asfour, T., “Representing e Adapt
Spatial Object Relations as Parametric Polar Distribution for Scene 7

Manipulation Based on Verbal Commands.” IROS, 2020 )
Motion

&
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Placing Objects: Sample, Filter, Select

Goal: Adapt target position of movement
primitive (MP).
B Sample N candidate target positions.

B Discard infeasible candidates.

® Collision with other objects
W Off the table

B Get candidates with top 10% PDF value.

B Pick candidate closest to target object’s
current position.

Robotics Il — Sensors and Perception| Chapter 6
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target
object

- Het
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Placing Objects: Execution (1) ﬂ(IT
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Move the apple tea roughly
to the left of the corny bars.

N
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Place the apple tea on the
other side of the corny bars.
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Overview A\‘(IT
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® Introduction

B Scene Representations

B Machine Learning for Object Relations

B Leveraging Object Relations
® Bimanual Action Recognition
® Placing Objects according to Verbal Commands
B Support Relations for Safe Bimanual Manipulation

&
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Avoiding Side-Effects in Bimanual Manipulation ﬂ(IT
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Top-down support detected

- i

= Use safer blmanual manlpulatlon strategy

> lift(Box_4,Box_3,HR)

Box 1 — Box_ 2

x 7

Box ©

&
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Extracting Support Relations through Force Analysis ﬂ(IT

Contacts

4

Separating Planes

4

Acting Force

4

Support Relation

Robotics Il — Sensors and Perception| Chapter 6

Contact
with Normal

NAN

Separating Plane
with Normal

Karlsruher Institut far Technologie

AV,

R. Kartmann, F. Paus, M. Grotz and T.
Asfour, "Extraction of Physically
Plausible Support Relations to Predict
and Validate Manipulation Action

Effects," RA-L (2018)
- H2T




Support Polygon Analysis

For each support relation SUPP(4, B):

1.
2.

104

Project A to the ground plane =» 2D polygon P,
For each object K where SUPP(K, A):

2.1 Project K to the ground plane
2.2 Construct intersection with Py

Build set of polygons: P, = {Px N P,|SUPP(K,A)}

Construct support polygon P, from Py
area(Pg)

Compute support area ratio 1, =

Assume SUPP(B, A) if 1y < Ts min

area(Py)

Robotics Il — Sensors and Perception| Chapter 6
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1.
2.
3.
4.



Interactive Exploration of Support Relations ﬂ(IT
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® Top-down support relations depend on physical properties of the involved
objects (e.g., mass distribution and friction coefficients)

® Interact with the scene to determine top-down support

=» Bimanual manipulation strategy
Force Measurement Left Hand I

[N
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Avoiding Side-Effects in Bimanual Manipulation ﬂ(IT
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Top-down support detected = Use safer bimanual manipulati \

> lift(Box_4,Box_3,HR)

Box 1 — Box 2

x 7

Box ©

&
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Safe Bimanual Manipulation Strategy
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Support Relations: Experiments on ARMAR-6

Picking Objects using
Probabilistic Support Relations
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® Introduction

B Scene Representations

B Machine Learning for Object Relations
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